
www.manaraa.com

ORIGINAL ARTICLE

Effective use of analysts’ effort in automated tracing

Jane Huffman Hayes1
• Alex Dekhtyar2

• Jody Larsen1
• Yann-Gaël Guéhéneuc3

Received: 13 July 2015 / Accepted: 12 October 2016 / Published online: 27 October 2016

� Springer-Verlag London 2016

Abstract Because of the large amount of effort it takes to

manually trace requirements, automated traceability

methods for mapping textual software engineering artifacts

to each other and generating candidate links have received

increased attention over the past 15 years. Automatically

generated links, however, are viewed as candidates until

human analysts confirm/reject them for the final require-

ments traceability matrix. Studies have shown that analysts

are a fallible, but necessary, participant in the tracing

process. There are two key measures guiding analyst work

on the evaluation of candidate links: accuracy of analyst

decision and efficiency of their work. Intuitively, it is

expected that the more effort the analyst spends on can-

didate link validation, the more accurate the final trace-

ability matrix is likely to be, although the exact nature of

this relationship may be difficult to gauge outright. To

assist analysts in making the best use of their time when

reviewing candidate links, prior work simulated four

possible behaviors and showed that more structured

approaches save the analysts’ time/effort required to

achieve certain levels of accuracy. However, these behav-

ioral simulations are complex to run and their results dif-

ficult to interpret and use in practice. In this paper, we

present a mathematical model for evaluating analyst effort

during requirements tracing tasks. We apply this model to a

simulation study of 12 candidate link validation approa-

ches. The simulation study is conducted on a number of

different datasets. In each study, we assume perfect analyst

behavior (i.e., analyst always being correct when making a

determination about a link). Under this assumption, we

evaluate the estimated effort for the analyst and plot it

against the accuracy of the recovered traceability matrix.

The effort estimation model is guided by a parameter

specifying the relationship between the time it takes an

analyst to evaluate a presented link and the time it takes an

analyst to discover a link not presented to her. We con-

struct a series of effort estimations based on different

values of the model parameter. We found that the analysts’

approach to candidate link validation—essentially the

order in which the analyst examines presented candidate

links—does impact the effort. We also found that the

lowest ratio of the cost of finding a correct link from

scratch over the cost of recognizing a correct link yields the

lowest effort for all datasets, but that the lowest effort does

not always yield the highest quality matrix. We finally

observed that effort varies by dataset. We conclude that the

link evaluation approach we call ‘‘Top 1 Not Yet Examined

Feedback Pruning’’ was the overall winner in terms of

effort and highest quality and, thus, should be followed by

human analysts if possible.

Keywords Requirements � Measurement � Traceability �
Analysts’ effort � Effort model � Feedback

& Jane Huffman Hayes

hayes@cs.uky.edu

Alex Dekhtyar

dekhtyar@csc.calpoly.edu

Jody Larsen

jody@dreamfrog.com

1 Department of Computer Science, College of Engineering,

University of Kentucky (UK), Lexington, KY 40506-0495,

USA

2 Department of Computer Science, Cal Poly, San Luis Obispo,

CA, USA

3 Department of Software and Computer Engineering, École

Polytechnique de Montréal, Montreal, QC, Canada

123

Requirements Eng (2018) 23:119–143

https://doi.org/10.1007/s00766-016-0260-8

http://orcid.org/0000-0001-9534-556X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-016-0260-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-016-0260-8&domain=pdf
https://doi.org/10.1007/s00766-016-0260-8

www.manaraa.com

1 Introduction

Traceability is defined as ‘‘the ability to describe and fol-

low the life of a requirement in both forward and backward

directions, i.e., from its origins, through its development

and specification, to its subsequent deployment and use,

and through periods of ongoing refinement and iteration in

any of these phases’’ [1]. Traceability is a useful activity in

that the resulting requirements traceability matrix (RTM)

(generically called a traceability matrix (TM)) can be used

to support many undertakings, such as change impact

analysis and regression testing. In general, traceability

matrices, if built, are generated manually or with general-

purpose techniques and are not kept up to date, largely due

to the required time and effort.

To address the problem of traceability and updates, trace-

ability research has concentrated on the problem of

automating the tracing process. The key starting point for

most such research on automating the tracing process is that a

candidate traceability matrix can be built quickly and cheaply

using an automatedmethod (themain cost being the setup cost

of the analysis). In our prior work [2], we observed that even a

high-recall, low-precision candidate TM already generates

savings as compared to the analyst’s need to examine every

pair of low-level/high-level elementswhenmeasured in terms

of selectivity. Such research onautomating the tracingprocess

and others do not assume that automated techniques necessary

yield better rankings. Indeed, a feedback loop could actually

decrease the accuracy of the rankings of candidate links.

Rather, we assume that adding techniques that increase pre-

cision and recall would, overall, improve the rankings.

However, to the best of our knowledge, no previous works

fully studied whether a combination of techniques (be them

automated or manual) would improve the ranking.

Information retrieval (IR) methods have demonstrated

usefulness in building links between textual artifacts [2–5].

These methods reduce the analyst effort to that of vetting,

i.e., validating, the returned links. In our prior work [2, 3, 6],

we concentrated on adapting various information retrieval

techniques to the problem of tracing software artifacts and on

evaluating the accuracy of the results. Information retrieval

(IR) methods examine the elements of a high-level artifact

(such as a concept specification) and return the elements

deemed relevant from a lower level artifact (such as design or

source code). These methods retrieve the majority of the

relevant elements (high recall or coverage) but tend to also

retrieve many false positives (low precision).

There are two directions in which research on

automating tracing proceeds from this point. The first

direction adopts, adapts, and develops new automated

tracing methods, which keep high recall but provide

improved precision. The second direction studies the

interactions between the analysts and the automated tracing

software and uses these interactions to improve the overall

accuracy of the results. This paper follows the second

direction. To further illustrate the importance of the ana-

lysts in tracing, we now present a motivating example.

1.1 Motivating example: HeartPace

Traceability is sometimes perceived as an activity that

provides little value to a software organization, often

because TMs are built manually and the task is never

completed (or not accurately). Thus, the organization does

not reap the benefits of a TM. When TM building is sup-

ported by accurate automated methods, traceability is a

value proposition, an activity that is central to the activities

of a company. Consider the case of the HeartPace Com-

pany, Inc., builder of pacemakers. HeartPace is about to

release a new product, the wireless pacemaker-plus. The

FDA guidelines for the software validation of medical

devices state ‘‘software validation includes confirmation of

conformance to all software specifications and confirma-

tion that all software requirements are traceable to the

system specifications [3].’’ Therefore, HeartPace must

provide evidence that the software requirements are

traceable to the system specifications, i.e., HeartPace must

build the TM. The choices are to (a) build the trace

manually (which studies have shown to be time-consuming

and error-prone); (b) build the trace automatically (which

has been shown to be fast but prone to false positives); or

(c) build a candidate trace automatically and then correct it

(traces are called ‘‘candidate’’ until human analysts

approved them). Studies have shown that (c) is indeed

what practitioners do. The analysts’ feedback is not only

the required final step, but it also improves the TMs gen-

erated by automated methods [2, 7].

Of the three options available to it, HeartPace chooses

option (c). Because it is in business to make a profit,

HeartPace wants to make the best use of its analysts’

effort.1 The effort to generate a candidate traceability

matrix using an automated method is relatively small (even

when the software installation, setup, data importation, and

output exportation are included in the overall count).

HeartPace can select one of the many information retrieval

techniques built into one of the available open-source

requirements tracing tools [8] known to produce good

results. HeartPace analysts expect to see a high-recall, low-

precision candidate traceability matrix that they must

examine further. If HeartPace has limited schedule and

1 Making the best use of analysts’ effort is difficult, which is the

reason why ‘‘Cost-Effective’’ was named as the #2 Grand Challenge

[4] facing requirement practitioners and researchers. The challenge

reads ‘‘2. Cost-Effective—The return from using traceability is

adequate in relation to the outlay of establishing it.’’

120 Requirements Eng (2018) 23:119–143

123

www.manaraa.com

resources, which is inevitably the case, the candidate link

validation method that builds the most accurate TM wins

while, alternatively, if the accuracy of the final TM is fixed

(ideally, it shall be 100% accurate with no missing links

and no false-positive links included), the candidate link

validation method that reaches the required accuracy with

the least effort is the preferred one. There are a number of

candidate link vetting methods that can be used by the

analysts. They can review each entry in the candidate TM

by examining all candidate links for each high-level ele-

ment (requirement) in the document order. They can

review the candidate TM entries in a global order by link

relevance estimated by the automated method. They can

use a helper automated technique called ‘‘feedback pro-

cessing’’ that reorders outstanding candidate links based on

the links that have already been vetted. The question the

management and the analysts must answer is therefore:

‘‘which link vetting strategy to select?’’

1.2 Contributions

This paper presents a simulation study that answers the

HeartPace management question for a set of candidate link

evaluation techniques. This study is organized as follows:

• We present the candidate link evaluation methods

organized around three core behavioral approaches:

• order in which candidate links are vetted by the

analyst,

• use of automated helper feedback processing tech-

nique to reorder outstanding candidate links based

on information provided in the links already vetted

by the analyst, and

• pruning, i.e., analyst decision to not consider any

links beyond a certain point as being summarily

irrelevant/false positive.

• We compute for four different datasets the accuracy of

various traceability matrices constructed by a simulated

analyst following each of the candidate link evaluation

techniques. We track the accuracy of the analyst-

constructed TM after each step in evaluation.

• We apply an effort estimation model for traceability

tasks developed by Dekhtyar, Hayes, and Smith [5]

(specifically, we use the simplified model described in

that work) to estimate the effort of building each TM

constructed during the simulation process. Using this

estimation technique, we compare the effort used by

each of the simulated analyst approaches to achieve the

TMs with a specific preset accuracy. The simplified

effort estimation model relies on a single parameter: the

ratio between the effort that it takes to evaluate a single

candidate link and that to manually discover a link that

has not been recovered by an automated method. We

construct effort estimations for each of the candidate

link evaluation methods for a range of values of the

parameter.

1.3 Paper organization

The paper is organized as follows. Section 2 introduces the

effort model and prior findings on study of the analysts.

Section 3 details the study. Section 4 presents the research

question results and discussion. Section 5 addresses related

work. Section 6 concludes and examines future work.

2 Automated requirements tracing and analyst
behavior models

Our study combines prior work on automating require-

ments tracing and analyst effort estimation. In this section,

we briefly describe the automated requirements tracing

techniques used in this study and the (simplified) analyst

effort estimation models for requirements tracing tasks

originally introduced by Dekhtyar, Hayes, and Smith [5].

2.1 Automated requirements tracing

In prior work, we reported on a number of information

retrieval techniques used to generate candidate link lists

[2, 6]. For this study, we selected one technique, vector

space retrieval using term frequency-inverse document

frequency (tf-idf) term weighting, completed with standard

Rochio feedback processing technique [9]. Feedback pro-

cessing is used optionally—some analyst behavior models

(a.k.a. candidate link vetting methods) described below

take advantage of it, while other models do not. We

selected this technique because it is the most commonly

applied IR technique for tracing, and it has been shown to

outperform other techniques [2]. We briefly describe how

these techniques are applied to the problem of traceability.

Tracing tasks involve two textual artifacts of the soft-

ware life cycle (e.g., a requirements document and a test

plan). Both artifacts are split into individual elements. The

tracing task is to build a mapping from the elements of one

artifact (we refer to it as the source or high-level document)

to the elements of the second artifact (which we call the

target or low-level document). We assume that the ele-

ments of each textual artifact can be decomposed into sets

of words. As in previous studies [2, 6, 7, 10–13], we only

assume sets of words and do not use other non-textual

information from the elements of the artifacts, such as

UML class diagrams or relations embodied in tables. We

will consider such information in future work.

Requirements Eng (2018) 23:119–143 121

123

www.manaraa.com

The IR technique, vector space retrieval, converts each

textual element into a vector of keyword weights. If

V = {t1,…,tN} is the list of all keywords found in the

artifacts, then an element d is represented as a vector

d = {w1,…,wN} of keyword weights, where each keyword

weight wi is computed as the product wi = tfi 9 idfi. Here,

tfi, called term frequency of the keyword, is the normalized

frequency of the occurrences of the keyword wi in our

element d. Inverse document frequency, idfi, of wi is

computed as idfi = log(M/Mi), where M is the total number

of elements in the document and Mi is the number of ele-

ments that contain wi.

For each high-level document element, the vector space

retrieval technique provides a ranking of low-level docu-

ment elements based on their similarity scores with some

high-level document. The similarity between two vectors is

computed as the cosine of the angle between the vectors:

simðq; dÞ ¼ q � d

PN

i¼1

q2
i �

PN

i¼1

d2
i

The quality of the rankings is measured through precision

and recall. Precision, the accuracy of the ranking, is the

percentage of retrieved links that are correct. Recall, the

coverage of the ranking, is the percentage of correct links

that were retrieved. In some settings, such as for Inde-

pendent Verification and Validation (IV&V) or Indepen-

dent Software Nuclear Safety Analysis (ISNSA) of a

safety-critical system, recall may be more important than

precision (as the consequence of a missed link may be

serious).

After the ranked candidate link list is built, it can be

improved via a feedback processing mechanism. Relevance

feedback analysis utilizes user input to improve the per-

formance of the retrieval algorithms by adjusting the key-

word weights of high-level document vectors according to

the relevant and irrelevant documents vetted by the analyst

[2]. In general, feedback processing involves examining a

subset of the links in the candidate link list and determining

whether each link is correct or not. Let q be a high-level

requirement and Dq be the set of all low-level requirements

retrieved by an IR technique. Suppose a subset of Dq was

examined and broken into two sets: Rq and Iq, of relevant

(correct) and irrelevant (false positive) links. The standard

Rochio feedback processing technique, which we use in

this study, uses this information to change the vector q as

follows:

qnew ¼ aq þ b

Rq

�
�

�
�

X

d2Rq

d � c

Iq

�
�

�
�

X

d2Iq

d:

where a, b, and c are normalizing constants, which indicate

the relative importance of the original vector (a), positive

information (b), and negative information (c). Positive

feedback may affect the recall of the candidate link list

(new relevant links may be retrieved) while negative

feedback may affect its precision (other false positives can

potentially be removed from the list).

2.2 Analyst effort estimation

Tracing manually (or with a generic technique such as the

search of a word processor) generally follows three steps

[10]:

• ‘‘manually assign keywords to all elements of all

artifact levels or build detailed keyword thesauri,

• manually or semiautomatically perform all searches for

low-level elements that map to high-level elements, and

• render a decision for each discovered candidate link.’’

When automating these steps, ‘‘[t]he analyst’s role

would change from a human search engine to a verifier

who checks the automatically generated candidate RTMs.

Software would assume the responsibility of indexing the

high- and low-level elements and determining (at the out-

set) pairs of similar elements.’’ [10] In the automated

scenario, the analysts will basically examine the candidate

TM and perform two activities: (1) vet returned links

(correcting errors of commission) and (2) search for

missing links (errors of omission).

Prior work in automated traceability has assumed an

implicit effort model; researchers assumed a higher quality

candidate trace matrix would result in lower analyst effort

in building the final trace matrix. Yet, this implicit effort

model has not been widely formalized or validated [5]. To

address this shortcoming, we must first define the analyst

effort. A theoretical effort model of an analyst working

with a result from an automated traceability technique was

developed by Dekhtyar, Hayes, and Smith [5].

Consider a tracing task with n high-level elements,

m low-level elements, with N = nm theoretical candidate

links. Let an automated tracing method return K B N can-

didate links.2 Let True be the total number of true links in

the dataset (the size of the ground truth TM), Hits be the

total number of true links retrieved, and Misses be the total

number of false-positive links retrieved. Then, the general

model for analyst effort estimate can be described using the

following formula [5]:

Effort K;D;Xð Þ ¼ K � Hits þ D � Misses

þ X � ðTrue � HitsÞ � ðN � ðHits þ MissesÞÞ
N

ð1Þ

2 An automated method returns a link if it evaluates the similarity of

the high-level and low-level elements forming the link above a

certain, pre-defined in the method threshold value.

122 Requirements Eng (2018) 23:119–143

123

www.manaraa.com

This model relies on three parameters: K, D, and X
which represent the following quantities3:

Parameter Meaning

K Average amount of time to confirm an automatically

retrieved candidate link

D Average amount of time to reject an automatically

retrieved candidate link

X Average amount of time to discover a true link not

retrieved by an automated method

These three parameters were introduced because it takes

different amounts of time to search for missing links than

to vet retrieved links [14]. Our prior work and anecdotal

evidence show that analysts tend to not look for missing

links [14, 15], which is unfortunate because spending all

allotted time vetting retrieved links can never result in

finding more true links than were on the retrieved candi-

date link list . Also, if analysts knew when to stop vetting

links and start searching for missing links (referred to as

pruning), they could best use their time to maximize the

number of correct links in the final TM. The latter state-

ment requires empirical validation. To facilitate the vali-

dation, we switch to a simplified model, in which we

assume that K = D, i.e., that it takes as much time to vet a

true link as it does to vet a false-positive link:

EffortðK;XÞ ¼ K � K þ X � ðTrue � HitsÞ � ðN � KÞ
N

ð2Þ

In earlier work, we looked to see whether, theoretically,

analysts might decide to stop vetting links at a certain point

in time and start looking for missing links [5]. We found

that there is a theoretical break point, though it might be

subtle (examining 97 links to find 8 true links makes sense

if the ratio of X/K = 12, but if X/K = 8, it is less effort

(than for X/K = 12) to examine 83 links to find 7 true

links). Some automated techniques may appear to be

preferential due to high recall and precision, but depending

on the value of X/K, a technique with lower recall/preci-

sion may account for less effort. As such, the effort model

described in Eq. (2) can be reduced, with some minor loss

of accuracy, to a model that depends on only one param-

eter, describing the analyst effort:

r ¼ X
K

ð3Þ

Given a specific tracing task, the ratio r of the effort that

it takes to correct a type II error to the effort that it takes to

vet a link/correct a type I error is likely to depend on two

main characteristics: the nature/size of the tracing task

itself and the intrinsic qualities of the analysts performing

the task. A larger number of potential links (i.e., larger

sizes of the tracing tasks) at a constant density of true links

leads to higher r values—it takes longer to search for a

link. Different analysts have their own intrinsic ‘‘speeds’’

of discovery, and this speed can affect the ratio r in either

direction.

2.3 Analyst simulation

In this paper, we undertake a number of studies to examine

real datasets (with a simulated perfect analysts: if the

analysts vet a link as true it is true) with a variety of

analysts’ behavior for a variety of values of r to see where

we find the smallest effort. The goal of this work was to

provide guidance to analysts on what method to apply and

when to stop vetting links.

We simulate analyst behavior because our goal was to

provide project managers and analysts with some estimates

of the accuracy that they could expect if they choose a

specific requirements tracing technique (from the list dis-

cussed above) to complete the tracing process. As stated

above, the efficacy of the tracing process depends highly on

the nature of the tracing tasks at hand: the size of the task,

the density of the trace links, the size of individual ele-

ments in the high-level and low-level artifacts, and the

language in which the artifacts are written. It also depends

on the analysts. Thus, there is no universal value for the

effort model parameters. However, in practice, the model

estimation parameter r, the ratio between the time to

evaluate a single link and the time to recover a missed link,

can be determined by project manager in a reasonably

straightforward way by a simple trial-and-error procedure

(have an analyst evaluate a few links, and have an analyst

attempt to recover a known link that has been removed

from the TM).

Consequently, the results presented in this paper are

akin to the old-style tables of logarithms or the current

p value tables still in use today: By determining the

parameter r, the manager can then look at the simulation

study results and obtain effort estimates for the tracing

task. The results presented here apply to four specific

datasets; however, they can serve as starting points for such

analysis.

We discuss various analysts’ behaviors and methods

next.

2.4 Methods of candidate link validation

We graphically illustrate a typical tracing scenario as

example, recall that our study uses simulated, not real,

3 These parameters were labeled a, b, and c in prior work [5]. We

rename them for this paper to avoid confusion with the Rochio

feedback parameters.

Requirements Eng (2018) 23:119–143 123

123

www.manaraa.com

analysts. Two software engineering artifacts, a require-

ments specification and a software test plan, have been

traced to each other using an automated technique. In this

case, the analysts have built the trace matrix to address a

question of interest: Whether every requirement is being

adequately validated by the test cases that map to it. As can

be seen in Fig. 1, a number of test cases have been

retrieved in the candidate trace matrix, but only three of the

six are True links, two were incorrectly retrieved (false

positive), and three were not retrieved (missing links).

There are different orders in which analysts can assess

individual candidate links from the candidate traceability

matrix provided by an automated technique, as well as

other options that the analysts can choose when running the

technique (such as feedback). As each represents an ana-

lysts’ decision, we generally refer to them as analysts’

methods. Each method is represented by the following

three attributes:

• ordering of the candidate links,

• using feedback, and

• pruning of the candidate links.

We examine these next.

2.4.1 Ordering of candidate links

The candidate links can be ordered globally or locally [16].

In global ordering, all the candidate links are ranked in

descending order based on their relevance weight or sim-

ilarity score, as given by the automated technique. In such a

case, the document ordering is lost. For example, the first

requirement from the requirement document may be listed

far down the list, perhaps with a low relevance to one of the

test cases (say 0.7).

In local ordering, the candidate links are grouped by the

source or high-level element. The high-level elements

(requirements, in our example) are presented in document

order. For each high-level element, the candidate links

from the target or low-level artifact (test cases, in our

example) are presented in descending order of their simi-

larity score. In such a case, the first requirement element

from the requirement document would be listed first, along

with all test plan elements that traced to it. In Fig. 2, left

side, we see the candidate links presented to the analysts in

local order—each high-level element has a list of low-level

elements in sorted order of relevance weight. In Fig. 2,

right side, we see the global ordering scenario. For exam-

ple, when considering a requirements specification ID 788,

our local ordering would list all test cases related to this

requirement in rank order based on the similarity/relevance

weight.

Based on an earlier study [17], it appears that some

analysts may only examine the low-level links with the

highest similarity scores for a given high-level element

(akin to only looking at the first URLs that appears after

one submits a search string to Bing or Google). This

method is called Top 1 Not Yet Examined, because the

analysts in essence only examine the top candidate link that

has not previously been seen. Other methods included

accept-focused (analysts who tend to accept all links and

reject very few), preview (analysts who tend to spend much

time examining links before starting to select or reject

links), and iterative (analysts who work on links and then

return to them again in an iterative fashion) [17]. Simula-

tion of these is future work.

2.4.2 Using feedback

Feedback processing was introduced above. In the ‘‘no

feedback’’ scenario, the analysts provide a decision for

each candidate link (Yes, it is a link (click on Link), No, it

is not a link (click on Not a Link)). The confirmed links are

added to the final traceability matrix (TM). Rejected links

are removed from the final TM.

In the ‘‘feedback’’ scenario (shown in Fig. 3), the ana-

lysts provide a decision for each candidate link (each test

case of the test plan that was retrieved as relating to a

requirement). A screenshot of the interactive RETRO.NET

[16] tracing tool with analyst feedback provided for two

elements of the MODIS dataset (see Sect. 3.5) is shown in

Fig. 4. After the decision is provided, the automated

technique executes one cycle of automated feedback pro-

cessing for the given high-level element (requirements).

The results of this feedback processing are immediately

incorporated into the candidate links and may cause the

reordering of the candidate links or the removal or addition

of candidate links to the list: The set of retrieved links K

from Eq. (2) depends on the qnew equation in Sect. 2.1,

which itself depends on the analyst’s feedback. In a non-

feedback scenario, the set K would be different than that

with feedback.

2.4.3 Pruning

In the ‘‘no pruning’’ scenario, the analysts will examine

every candidate link retrieved by the automated method. In

other words, the analysts do not know when all the true

links have been retrieved and have been examined. In

Fig. 5, the analysts would examine all the links for

requirement SDP3.3-4, though only the top link (in green)

is a true link.

In the ‘‘pruning’’ scenario, the analysts stop examining

candidate links for a given high-level element (requirement

SDP3.3-4) after having examined the last true link (test

case L1APRO1-I-1) for that element. Typically, pruning

cannot be fully automated, but heuristics exist and have

124 Requirements Eng (2018) 23:119–143

123

www.manaraa.com

been successfully used in the literature. One such heuristics

purports that after a number of false links, the analysts

would ‘‘know,’’ i.e., can assume, that the remaining links

cannot include true links. Another heuristic [18] uses a

threshold t to prune the set of traceability links, keeping

only links whose similarity values are greater than or equal

to t [[0; 1]. The choice of the pruning heuristic is out of the
scope of this paper, in which we only consider whether the

lists of links are complete or pruned to assess the impact of

these two possibilities on the simulated analysts’ efforts.

We combined the attributes into the following methods:

• method 1—Global, Feedback, Pruning (GFP),

• method 2—Global, Feedback, No Pruning (GFNP),

• method 3—Global, No Feedback, Pruning (GNFP),

• method 4—Global, No Feedback, No Pruning

(GNFNP),

• method 5—Local, Feedback, Pruning (LFP),

• method 6—Local, Feedback, No Pruning (LFNP),

• method 7—Local, No Feedback, Pruning (LNFP),

• method 8—Local, No Feedback, No Pruning (LNFNP),

• method 9—Top 1 Not Yet Examined (NYE), Feedback,

Pruning (TFP),

• method 10—Top 1 NYE, Feedback, No Pruning

(TFNP),

• method 11—Top 1 NYE, No Feedback, Pruning

(TNFP), and

• method 12—Top 1 NYE, No Feedback, No Pruning

(TNFNP).

Our simulated analysts always correctly vet a link.

While in practice this assumption may not always hold, our

reasons for making this assumption are quite straightfor-

ward. Automated tracing methods and techniques must be

built and tested assuming analysts’ perfect feedback. If our

methods cannot provide better results with perfect feed-

back, the results will certainly not improve when the

feedback is imperfect. Also, we simulate that the analysts

can determine when a specific requirement is completely

satisfied (for the pruning scenario), for the same reasons.

Fig. 1 Tracing scenario: requirements to test plan

Fig. 2 Global versus local ordering

Fig. 3 Feedback

Requirements Eng (2018) 23:119–143 125

123

www.manaraa.com

2.5 Measures

Our focus is on the amount of analysts’ effort spent on a

tracing task. As the direct measure of analysts’ effort, we

use the number of observed candidate links that the ana-

lysts must study and accept or reject during the run of the

method. We use precision and confirmed recall (i.e., recall

within the observed set of candidate links) to establish the

quality of the final mapping produced by the analysts,

where:

Precision ¼ Hits= Hitsþ Strikesð Þ
Recall ¼ Hits= HitsþMissesð Þ

with Hits and Misses as defined in Sect. 2.2 and Strikes as

the number of links vetted as false by the analysts (false

positives).

3 Analysts’ effort study

We describe a series of simulation studies undertaken to

examine the analysts’ effort and whether feedback and

pruning reduce this effort.

Fig. 4 RETRO.NET screenshot of feedback

Fig. 5 Pruning

126 Requirements Eng (2018) 23:119–143

123

www.manaraa.com

3.1 Research questions

We explore the following research questions:

Research Question 1 (RQ1)—Does the analysts’ method

(ordering, feedback, pruning) impact effort? It is our

expectation that local methods will outperform Top 1 and

global methods, feedback methods will outperform non-

feedback methods, and that pruning will outperform non-

pruning methods.

Research Question 2 (RQ2)—Is there a point in time when

the analysts should switch from vetting candidate links to

searching for missing links? It is our expectation that a

particular ratio of r will perform best, regardless of dataset

or analysts’ method. Such a ratio will assist in the optimal

utilization of the analysts’ time.

Research Question 3 (RQ3)—Does the method combined

with ratio of r that results in the lowest amount of ana-

lysts’ effort also yield the best trace matrix in terms of

precision and confirmed recall? It is desirable that the

minimal effort also yields the highest quality trace matrix,

but prior work showed that scenarios exist where the

analysts may prefer a method that did not yield the best

matrix [5].

Research Question 4 (RQ4)—Does the lowest effort vary

based on dataset? It is expected that the effort will vary by

dataset.

3.2 Experimental design

The independent variable is the effort ratio with seven

levels (r set to seven different values) and the analysts’

methods with three levels. The dependent variables are

confirmed recall, precision, and effort. We examined four

datasets (three unique) from different domains, Gantt

subset 1, Gantt subset 2, MODIS, and CM-1 subset 1 [29].

For each dataset, we applied the 12 methods described in

Sect. 2. We examined actual curves from the traces of

these datasets for a variety of r values: 2, 5, 7, 10, 12, 15,

and 20.

As mentioned above, the r ratios largely depend on both

the characteristics of the tracing tasks and the intrinsic

qualities of analysts. Thus, predicting an appropriate r ratio

for each dataset is difficult. Instead, we choose to sample a

fairly large space of possibilities. The r ratio of 2 corre-

sponds to analysts who require twice the time to discover

an error of omission as they need to discover an error of

commission. This represents a possibly overly optimistic

view of what is possible in practice. On the other end of the

spectrum, a r ratio of 20 corresponds to analysts taking 20

times more time to discover an error of omission than to

discover an error of commission. While in practice the ratio

can be even larger (a very large tracing task, or very

thorough analysts), we felt that an organization that has

constraints on the amount of effort to perform a tracing task

(see our example above) would not want to operate under a

ratio significantly higher than 20: In this scenario, if it took

the analysts about 2 min to vet a single link (not unrea-

sonable based on our experience with link vetting in some

datasets), it would take them 40 min to discover a single

missing one—quite a large amount of time.

We performed statistical analysis to compare the 12

methods to each other for the individual datasets. Note that

what is called Effort in the following figures refers to r.

3.3 Gantt subset 1

Gantt project is an open-source tool for building Gantt

charts [19]. The project was broken into two datasets, each

consisting of high-level requirements and lower level

requirements. The Gantt subset 1 dataset has ten high-level

elements and 35 low-level elements (see Table 1), or 350

potential links. We chose to use this for several reasons.

Gantt subset 1 is significantly smaller than CM-1 subset 1

(with over 1,100 combinatorial links). Also, it is from a

very different domain than is CM-1 subset 1 and MODIS.

Gantt subset 1 has small elements in both the low-level and

high-level documents (as compared to CM-1 with very

large low-level elements). Gantt subset 1’s size is similar to

MODIS, but with more correct links.

Table 1 also provides information on the initial candi-

date trace matrix retrieved using VSM with tf-idf weight-

ing as implemented in the RETRO.NET tool [16] (prior to

ordering, pruning, etc.): 343 (of the 350) links were

retrieved, all 34 true links were retrieved (so perfect recall)

but at the price of many false positives (precision of only

0.0991).

Each of the 12 methods was applied to Gantt subset 1.

The resulting curves for number of observed links, preci-

sion, and confirmed recall were obtained. Confirmed recall

versus observed candidate links for a subset of the methods

(no pruning) is shown in Fig. 6.

In this case, it can be seen that the Local Feedback No

Pruning method slightly outperforms Global Feedback No

Pruning. It quickly achieves perfect recall, in 130 observed

Table 1 Gantt subset 1 dataset overview

Dataset name Gantt subset 1

elements in requirements document (high level) 10

elements in design document (low level) 35

correct links 34

Total number of retrieved candidate links 343

Total number of correct links retrieved 34

Recall 1.0

Precision 0.0991

Requirements Eng (2018) 23:119–143 127

123

www.manaraa.com

candidate links, and then levels off. In contrast, the Top 1

methods require far more observed links yet exhibit a more

consistent true link discovery behavior.

Figure 7 shows all 12 methods applied to Gantt subset 1.

The Global Feedback Pruning method slightly outperforms

Local Feedback Pruning. It requires 55 observed candidate

links to find all the true links, whereas Local Feedback

Pruning requires 57.

Figure 8 shows precision versus observed candidate

links for all 12 methods. Despite some slight variations in

precision, it can be seen that all methods except the Top 1

methods with no pruning start with excellent precision and

then drop off in a gradual way (as more links are observed,

more false positives are examined thus lowering precision).

The effort model was then applied to each curve. Fig-

ure 9 shows all r ratios for the Local No Feedback No

Pruning method.

We found that the Top 1 Feedback Pruning method was

the method that achieved the highest confirmed recall (of

0.7647, with precision of 0.8387) with the least amount of

effort; this was achieved with effort ratio of 2 (calculated

effort was 46.68). Effort ratio 2 resulted in the lowest effort

required to find the 34 correct links. Other ratios reached

effort of 340 before leveling out. We examine Gantt subset

2 next.

3.4 Gantt subset 2

The Gantt subset 2 dataset [19] has seven high-level ele-

ments and 34 low-level elements (see Table 2), or 238

combinatorial links. A distinct subset of the Gantt dataset

(from Gantt subset 1) was analyzed and traceability links

recovered in order to build this dataset. We chose to use

this for the same reasons as listed in Sect. 3.3 above for

Gantt subset 1, and to offer a comparison between datasets.

Table 2 also details the initial candidate trace matrix

retrieved: 236 (of the 238) links were retrieved, all 34 true

links were retrieved (perfect recall) but so were many false

positives (precision of only 0.1441). Figure 10 shows the

confirmed recall versus observed candidate links for a

subset of the methods (no pruning).

Figure 11 depicts confirmed recall versus observed

candidate links for all 12 methods. The Local Feedback

Pruning method achieves perfect confirmed recall at 115

observed candidate links, just ahead of Global Feedback

Pruning at 119 links. The curves for all but Top 1 have a

different behavior than for Gantt subset 1: Each method has

a more gradual increase in confirmed recall, versus the

close to vertical slope for Gantt subset 1. The Top 1

methods again have a more consistent slope.

Figure 12 shows precision versus observed candidate

links for all 12 methods. With some slight variations in

precision, most of the methods (save two) have a similar

behavior. The Top 1 methods with no pruning start with

excellent precision and then drop off more rapidly than the

other methods.

The effort model was then applied to each curve. Fig-

ure 13 shows all r ratios for the Global No Feedback No

Pruning method.

The ‘‘winner’’ is the effort ratio of 2, which has its

lowest effort (62.54) at 15 observed links. The precision

is 0.6667, and confirmed recall is 0.2941 at that point.

Effort 2 ratio was also the winner for Gantt subset 1, but

with a much lower minimal effort (46.68). Gantt subset

Fig. 6 Confirmed recall versus

observed candidate links for

Gantt subset 1—no pruning

128 Requirements Eng (2018) 23:119–143

123

www.manaraa.com

1 had a much higher quality trace matrix at its lowest

effort, particularly in terms of confirmed recall (preci-

sion of .8387, confirmed recall .7647). We examine

MODIS next.

3.5 MODIS

The NASA Moderate Resolution Imaging Spectrora-

diometer or MODIS dataset consists of 19 high-level

requirements and 49 lower level requirements [20] (see

Table 3), or 931 combinatorial links.

Table 3 also describes the initial candidate trace matrix

retrieved: 908 (of the 931) links were retrieved, all 28 true

links were retrieved (perfect recall) as were many false

positives (precision of only 0.0308). Figure 14 shows the

confirmed recall versus observed candidate links for a

subset of the methods (with pruning).

Figure 14 shows that Global No Feedback Pruning

slightly outperforms other methods, requiring 58 observed

candidate links to achieve confirmed recall of 1.0, while

Top 1 No Feedback Pruning is a close second at 59

observed candidate links.

Figure 15 shows that six of the 12 methods exhibit

similar behavior, reaching confirmed recall of 1.0 in the

58–60 observed candidate links range. The Top 1 methods

with no pruning have the slowest start, moving slowly to

confirmed recall of 0.1 and then increasing in a pronounced

way.

Figure 16 shows precision versus observed candidate

links for all 12 methods. It is clear that all methods except

the Top 1 methods with no pruning start with excellent

precision and then drop off quickly (as more links are

observed, more false positives are examined thus lowering

precision).

Figure 17 shows the effort ratios for Global Feedback

No Pruning for MODIS.

Effort ratio 2 is the winner with the lowest effort, 50.72.

At that point, confirmed recall is 0.2857 and precision is

0.7273. We examine CM-1 subset 1 next.

3.6 CM-1 subset 1

In this study, we used a subset of CM-1 [29], called CM-1

subset 1. It has 22 high-level elements and 53 low-level

Fig. 7 Confirmed recall versus observed candidate links for Gantt subset 1—all methods

Requirements Eng (2018) 23:119–143 129

123

www.manaraa.com

elements (see Table 4), or 1166 combinatorial links

(22 9 53). CM-1 subset 1 is of interest as it is a subset of a

larger dataset (on which a similar experiment was run and

reported [16]). The gold standard (answer set) for CM-1

subset 1 has recently been improved by several researchers

in the traceability community, decreasing its internal threat

to validity. CM-1 subset 1 also has larger elements (based

on average number of words per element in the low-level

document) than many datasets.

Table 4 also details the initial candidate trace matrix

retrieved: 1132 (of the 1166) links were retrieved; all 45

true links were retrieved (perfect recall) as were many false

positives (precision of only 0.0398). Confirmed recall

versus effort (observed candidate links) for all the methods

is shown in Fig. 18.

Fig. 8 Precision versus observed candidate links for Gantt subset 1—all methods

Fig. 9 Local No Feedback No Pruning, all effort ratios (effort vs.

observed candidate links)

Table 2 Gantt subset 2 dataset overview

Dataset name Gantt subset 2

elements in requirements document (high level) 7

elements in design document (low level) 34

correct links 34

Total number of retrieved candidate links 236

Total number of correct links retrieved 34

Recall 1.0

Precision 0.1441

130 Requirements Eng (2018) 23:119–143

123

www.manaraa.com

The curves are very similar to those of MODIS, with

the same six methods exhibiting similar behavior,

quickly reaching confirmed recall of 1.0. Four methods

exhibit almost identical behavior: LFNP, LNFNP,

GFNP, and GNFNP. As with MODIS, TFNP and

TNFNP again are the slowest to rise to perfect

Fig. 10 Confirmed recall

versus observed candidate links

for Gantt subset 2—no pruning

methods

Fig. 11 Confirmed recall versus observed candidate links for Gantt subset 2—all methods

Requirements Eng (2018) 23:119–143 131

123

www.manaraa.com

confirmed recall and have a more gradual slope than the

other methods.

Next, we examined the r ratios. Figure 19 shows ratio

r = 2 for all 12 methods.

To examine the curves more closely, Figs. 20, 21, and

22 depict the r = 2 curves for the global methods, local

methods, and Top 1 methods, respectively. As can be seen,

all methods using pruning terminate more quickly than

non-pruning methods (regardless of local, Top 1 Not Yet

Examined (NYE), or global). It appears that feedback

methods may have resulted in less effort.

We examined the number of observed links and the

number of true links seen for the minimum effort for each

method for effort ratio 2 (the lowest for each method), see

Table 5. The minimum effort values for each method were

very similar. The local methods, regardless of feedback or

pruning, examined 22 links at their lowest effort points,

finding 13 true links for precision of 0.5909 and confirmed

Fig. 12 Precision versus observed candidate links for Gantt subset 2

Fig. 13 Global No Feedback No Pruning—all effort ratios (effort vs.

observed candidate links)

Table 3 MODIS dataset overview

Dataset name MODIS

elements in requirements document (high level) 19

elements in design document (low level) 49

correct links 28

Total number of retrieved candidate links 908

Total number of correct links retrieved 28

Recall 1.0

Precision 0.0308

132 Requirements Eng (2018) 23:119–143

123

www.manaraa.com

Fig. 14 Confirmed recall

versus observed candidate links

for MODIS—pruning

Fig. 15 Confirmed recall versus observed candidate links for MODIS—all methods

Requirements Eng (2018) 23:119–143 133

123

www.manaraa.com

recall of 0.2889. GFP had the same values as the local

methods. GFNP was the ‘‘winner’’ with lowest effort; it

had confirmed recall of 0.2 and precision of 0.818. Other

methods had slightly higher precision of 1.0, but had lower

confirmed recall (lower than 0.1). Several methods had

higher confirmed recall, 0.2889, but with much lower

precision of 0.5909.

3.7 Statistical analysis

Statistical analysis, using the Student’s t test, was under-

taken for the various measures, between methods. All

assumptions of the Student’s t test were met by the data,

and we used a = 0.05. An exemplary table for the MODIS

dataset and precision measure is shown in Table 6.

As can be seen in Table 6, in general, the local methods

are statistically different from the Top 1 and global

methods. The Top 1 methods with pruning are statistically

different from all other methods. The Top 1 methods with

no pruning are statistically significantly different from the

pruning Top 1 and global methods. The global pruning

methods have the same results as the Top 1 pruning

methods; the global non-pruning methods have the same

results as the Top 1 non-pruning methods.

3.8 Threats to validity

The research is subject to a number of threats to validity.

Threats to internal validity include the potential bias

introduced by the use of a gold standard (the answer sets

associated with each dataset). First, it is possible that the

answer set is not correct. Second, it is possible that as

builders of the answer set, we may have inadvertently

biased the results. To mitigate these threats, we used

datasets such as CM-1 subset 1, which have been used by

the traceability community. The community has suggested,

and we have accepted, changes to the answer set for CM-1

subset 1. The MODIS dataset has also been in use for many

years in the community, and many research groups

examined this answer set. The Gantt datasets were devel-

oped for use in tracing and satisfaction research, at least

two research groups have examined their answer sets.

We mitigated threats to construct validity by using

standard measures found in information retrieval and

Fig. 16 Precision versus observed candidate links for MODIS—all methods

134 Requirements Eng (2018) 23:119–143

123

www.manaraa.com

traceability studies. We mitigated threats to conclusion

validity by undertaking statistical analysis and ensuring

that the assumptions required of the statistical test were

met.

A threat to external validity is that the datasets are not

representative of datasets in use in reality. To address this

threat, we used three different datasets. The datasets were

of reasonable size, with the CM-1 subset 1 dataset con-

sisting of over 1100 possible links. Another possible

external threat to validity is that of simulating perfect

analysts. We argued that if a feedback method cannot

perform well given perfect feedback, it will certainly not

perform well given imperfect feedback. Hence, we believe

that it makes sense to begin studies of analysts’ effort by

working with perfect feedback.

A further threat to external validity relates to the

applicability of our model to other domains. Our work

examined the domain of requirements tracing, specifically

modeling the interaction of an analyst with a candidate

list of links between requirement artifacts. Our under-

standing of this problem, our understanding of how ana-

lysts work with candidate links, and our modeling of this

problem are all rooted in the requirements engineering

domain. Such an effort model may look very different for

another domain such as human–computer interaction

(HCI).

4 Results

We now examine each of the research questions and pro-

vide answers based on the study above and considering the

threats to validity described previously.

Research Question 1 (RQ1)—Does the analysts’ method

(ordering, feedback, pruning) impact effort?

Fig. 17 Global Feedback No Pruning—all effort ratios (effort vs. observed candidate links)

Table 4 CM-1 subset 1 dataset overview

Dataset name CM-1 subset 1

elements in requirements document (high level) 22

elements in design document (low level) 53

correct links 45

Total number of retrieved candidate links 1132

Total number of correct links retrieved 45

Recall 1.0

Precision 0.0398

Requirements Eng (2018) 23:119–143 135

123

www.manaraa.com

Based on our study, the answer to research question 1, is

Yes: the analysts’ method impacts effort. Table 7 presents

the ‘‘winning’’ minimum effort value for each analyst’s

method and for each dataset examined. The first column

lists the method. Each dataset is represented by the

subsequent columns, depicting the lowest effort value

achieved for that method and that dataset at the ratio of r
that is shown in parentheses next to the dataset name. For

example, for CM-1 subset 1 for GFNP, the minimum effort

was 82.32 and the ratio of r was 2. The final column of the

Fig. 18 Comparison of 12 methods applied to CM-1 subset 1

Fig. 19 Comparison of 12

methods, effort 2 (r = 2)

applied to CM-1 subset 1

136 Requirements Eng (2018) 23:119–143

123

www.manaraa.com

table indicates the lowest effort (winner) and highest (of

the minimum effort values) or loser for each dataset—the

method is a winner unless specifically noted as loser. We

found two winners. Two methods had the lowest effort for

two datasets: The GFNP method provided the lowest effort

for CM1 subset 1 and tied for Gantt subset 2, and the TFP

method was the best for Gantt subset 1 and MODIS. One

other method was a winner: The GFP method had the

lowest effort for Gantt subset 2 (tie). TNFNP was the loser

most often, with the highest (minimum) effort for Gantt

subset 1 and tied as the loser for CM1 subset 1 and Gantt

subset 2.

Examining the winner and loser methods more closely,

we first look at the analysts’ effort required to achieve a

fixed recall. As the retrieved candidate matrix for all four

datasets had all the true links in it, we set the recall at 1.0.

Table 8 lists the two winner methods (GFNP and TFP)

as well as the loser method (TNFNP) in column 1, the

number of confirmed true links in column 2, the number of

observed candidate links in column 3, the precision in

column 4, and the dataset in column 5. The TFP method

required the least number of observed links for all datasets

and also achieved the best precision. For example, for

Gantt subset 1, TFP required the least analysts’ effort,

requiring only 57 observed links to find the 34 true links

(precision of 0.5965).

Next, we fix the number of observed candidate links for

the winner and loser methods and examine the recall

achieved for this amount of analysts’ effort. We set the

observed links to be the lowest number required to achieve

recall of 1.0 (thus it varies by dataset). Table 9 lists the

three methods in column 1, the number of observed links in

column 2, the number of confirmed true links in column 3,

the recall in column 4, the precision in column 5, and the

dataset in column 6. The TFP method is the overall winner,

achieving perfect recall and the highest precision for all

datasets. The GFNP method is not far behind TFP for the

three smaller datasets (all but CM1 subset 1). For example,

for Gantt subset 1, the confirmed recall is 0.8824 compared

to 1.0 for TFP, and the precision is 0.5263 compared to

0.5965. The TNFNP method performs poorly, not even

discovering any true links for some datasets.

Research Question 2 (RQ2)—Is there a point in time when

the analysts should switch from vetting candidate links to

searching for missing links?

The answer to this question appears to be Yes. Looking

again at Table 7, we see that the effort ratio that consis-

tently provides the lowest effort is effort ratio 2. For

example, for the TNFNP method (which was the overall

loser) for CM1 subset 1, the minimum effort was 85.72 for

effort ratio 2, 160.33 for effort ratio 5, 198.02 for effort

ratio 7, 245.17 for effort ratio 10, 267.69 for effort ratio 12,

290.62 for effort ratio 15, 328.83 for effort ratio 17, and

328.83 for effort ratio 20. Comparing the minimum effort

at effort ratio 2 to that of effort ratio 20, 383% more effort

is required when the ratio is 20.

Research Question 3 (RQ3)—Does the method combined

with ratio of r that results in the lowest amount of analysts’

effort also yield the best trace matrix in terms of precision

and confirmed recall?

The answer to this question appears to be Not always.

The precision and confirmed recall at the minimum effort

Fig. 20 Comparison of global methods, effort 2 (r = 2) applied to

CM-1 subset 1

Fig. 21 Comparison of local methods, effort 2 (r = 2) applied to

CM-1 subset 1

Fig. 22 Comparison of Top 1 NYE methods, effort 2 (r = 2) applied

to CM-1 subset 1

Requirements Eng (2018) 23:119–143 137

123

www.manaraa.com

Table 5 Effort ratio = 2 for

r - C1 subset 1
Method Min. effort #observed@mineffort #trueobserved@mineffort Confirmed recall Precision

GFNP 82.320755 11 9 0.2 0.81818

GFP 84.792453 22 13 0.2889 0.590909

GNFNP 83.365352 10 8 0.1778 0.8

GNFP 82.428816 9 8 0.1778 0.88889

TFNP 82.543739 7 7 0.1556 1

TFP 83.598628 6 6 0.1333 1

TNFNP 85.718696 4 4 0.0889 1

TNFP 85.718696 4 4 0.0889 1

LFNP 84.792453 22 13 0.2889 0.590909

LFP 84.792453 22 13 0.2889 0.590909

LNFP 84.792453 22 13 0.2889 0.590909

LNFNP 84.792453 22 13 0.2889 0.590909

Table 6 T test for 12 methods applied to MODIS—precision

Method’s precision value Is statistically significantly different than

Local, No Feedback, Pruning (LNFP) TNFP, TFP, GFP, GNFP

Local, No Feedback, No Pruning (LNFNP) TNFP, TFP, GFP, GNFP

Local, Feedback, Pruning (LFP) TNFP, TFP, GFP, GNFP

Local, Feedback, No Pruning (LFNP) TNFP, TFP, GFP, GNFP

Top 1 NYE, No Feedback, Pruning (TNFP) LNFP, LNFNP, LFP, LFNP, TFNP, TNFNP, GFNP, GNFNP

Top 1 NYE, No Feedback, No Pruning (TNFNP) TNFP, TFP, GFP, GNFP

Top 1 NYE, Feedback, Pruning (TFP) LNFP, LNFNP, LFP, LFNP, TFNP, TNFNP, GFNP, GNFNP

Top 1 NYE, Feedback, No Pruning (TFNP) TNFP, TFP, GFP, GNFP

Global, No Feedback, Pruning (GNFP) LNFP, LNFNP, LFP, LFNP, TFNP, TNFNP, GFNP, GNFNP

Global, No Feedback, No Pruning (GNFNP) TNFP, TFP, GFP, GNFP

Global, Feedback, Pruning (GFP) LNFP, LNFNP, LFP, LFNP, TNFNP, TNFNP, GFNP, GNFNP

Global, Feedback, No Pruning (GFNP) TNFP, TFP, GFP, GNFP

Table 7 Minimum effort value for each method and dataset

CM1S1 (2) Gantt 1 (2) Gantt 2 (2) MODIS (2) Winner/loser

GFNP 82.32 54.57 60.53 50.72 CM1S1, tied on Gantt 2

GFP 84.79 48.72 60.53 43.76 Tied on Gantt 2

GNFNP 83.37 59.56 62.55 50.72

GNFP 82.43 59.44 62.55 47.70

TFNP 82.54 65.77 64.88 56.96

TFP 83.60 46.69 64.88 39.75 Gantt 1, MODIS

TNFNP 85.72 68.96 65.92 56.96 Tied loser CM1S1, loser Gantt 1, tied loser Gantt 2

TNFP 85.72 67.48 65.92 43.71 Tied loser CM1S1, tied loser Gantt 2

LFNP 84.79 53.55 63.56 62.48 Tied loser MODIS

LFP 84.79 49.88 63.56 56.00

LNFP 84.79 59.50 63.56 56.00

LNFNP 84.79 59.50 63.56 62.48 Tied loser MODIS

138 Requirements Eng (2018) 23:119–143

123

www.manaraa.com

point for each dataset were not always the best. Tables 7

through 9 show that, though the GFNP method had the

lowest effort for some datasets, the TFP method was the

winner for all datasets in terms of matrix quality at the

lowest effort point.

Research Question 4 (RQ4)—Does the lowest effort vary

based on dataset?

The answer to this research question is Yes. The Stu-

dent’s paired t test was applied with a one-tailed distribu-

tion (the null hypothesis is equal variance between dataset

1 and dataset 2, the alternative hypothesis is that the

variances are not equal; we use a = 0.05), comparing the

lowest effort value for each of the 12 methods for each

dataset to each other. All required assumptions of the

Student’s t test were met by the data. Table 10 shows the

p values for each comparison, bolded items are statistically

significant. For example, the minimum effort values of

Gantt subset 1 and Gantt subset 2 are statistically signifi-

cantly different, with a p value of 0.006. The CM-1 subset

1 and Gantt subset 2 datasets exhibit the greatest difference

in minimum effort, with a p value of 6.6E-14.

5 Related work

Though the generation of mappings is a general problem, it

has been investigated for software engineering in the area

of requirements traceability or requirements tracing4 and

defined as: ‘‘the ability to follow the life of a requirement

in a forward and backward direction [1].’’ Much work to

date has concentrated on the recovery or generation of

traceability links between software engineering artifacts

(structured as well as non-structured artifacts).

Antoniol et al. [11] applied the vector space model (also

known as term frequency-inverse document frequency [9])

Table 8 Observed candidate

links and precision at fixed

recall of 1.0 for ‘‘Winner’’ and

‘‘Loser’’ methods

Method Confirmed true links Observed candidate links Precision Dataset

GFNP 34 111 0.3063 Gantt subset 1

TFP 34 57 0.5965 Gantt subset 1

TNFNP 34 313 0.1086 Gantt subset 1

GFNP 34 158 0.2512 Gantt subset 2

TFP 34 115 0.2957 Gantt subset 2

TNFNP 34 217 0.1567 Gantt subset 2

GFNP 28 329 0.0851 MODIS

TFP 28 71 0.3944 MODIS

TNFNP 28 622 0.045 MODIS

GFNP 45 662 0.068 CM1 subset 1

TFP 45 143 0.3147 CM1 subset 1

TNFNP 45 1082 0.0416 CM1 subset 1

Table 9 Confirmed recall and precision at fixed number of observed candidate links

Method Observed links Confirmed true links Confirmed Recall Precision Dataset

GFNP 57 30 0.8824 0.5263 Gantt subset 1

TFP 57 34 1.0 0.5965 Gantt subset 1

TNFNP 57 7 0.2059 0.1228 Gantt subset 1

GFNP 115 26 0.7647 0.2261 Gantt subset 2

TFP 115 34 1.0 0.2957 Gantt subset 2

TNFNP 115 21 0.6176 0.1826 Gantt subset 2

GFNP 71 23 0.8214 0.3239 MODIS

TFP 71 28 1.0 0.3944 MODIS

TNFNP 71 0 0 0 MODIS (note that first match found at link 145)

GFNP 143 28 0.6222 0.1958 CM1 subset 1 (143 links)

TFP 143 45 1.0 0.3147 CM1 subset 1 (143 links)

TNFNP 143 12 0.2667 0.0839 CM1 subset 1 (143 links)

4 Note that ‘‘requirements tracing’’ is often the moniker even when

requirements are not being traced.

Requirements Eng (2018) 23:119–143 139

123

www.manaraa.com

to the problem of recovering traceability links between a

textual user’s manual and source code and between textual

functional requirements and source code. They achieved

high recall values (93–100%), but were only able to

achieve 13–18% precision. Antoniol et al. [12] also applied

a probabilistic method to the problem of recovering links

between source code and documentation. Though high

precision was achieved (83%), it was at the price of recall

(39%). For the purposes of IV & V, recall must be high

(typically 90% or higher) [2].

Marcus and Maletic [13] applied latent semantic

indexing (LSI) to the problem of recovering traceability

links between documentation and source code (using the

same dataset as Antoniol et al. [11]) and found that LSI

performs at least as well as the vector space model while

requiring less preprocessing of the artifacts. They achieved

recall of 91–100% and precision of 13–18%. When they

relaxed recall to 71%, they achieved precision of 43%.

Cleland-Huang et al. developed a method for dynamically

generating traceability data in a speculative manner for

performance models that may be affected by a proposed

change [21]. Links were established and maintained

between the performance models and key requirements

data that had been derived from the performance models.

The current study focuses on the analysts’ behavior in

requirements tracing. In earlier work [6], we undertook a

study to compare analysts: (1) performing tracing manu-

ally, (2) using a keyword-based technique, (3) using the

output from a keyword-based technique, and (4) using our

IR technique. The results showed that the analysts and the

keyword-based technique achieved 63% recall and 39%

precision, while using our technique achieved 85% recall

and 40% precision. Next, we developed the requirements

for a requirements tracing technique [22] and found that a

number of the requirements had to do with the analysts,

specifically the utility sub-requirement of believability (the

analysts feel that the technique is useful), the communi-

cability sub-requirement of discernibility (the technique

provides information, process flow, and the results to the

analysts in an understandable way), and the final require-

ment of endurability (the technique makes the tracing task

as pleasant as possible).

In later work, we introduced the notion of analysts’

feedback. Here, the analysts provide feedback on the top N

elements of each candidate link list (Yes, this is a link, No,

this is not a link) and the feedback is used to modify the

vectors for the high-level elements before re-executing the

matching algorithm. Using feedback, we improved recall to

close to 90% with precision close to 80% (for the MODIS

dataset) [2].

Our first study of the analysts’ effort was undertaken

using a small dataset (MODIS) and a number of require-

ments traceability matrices [14]. Some RTMs had low

recall but high precision, some had low precision but high

recall, and varied combinations in between. It was our

belief that analysts would make better feedback decisions if

given a high-quality RTM (high recall and high precision),

but would make bad decisions if given poor-quality RTMs.

What we observed was that all analysts made bad decisions

(struck true links and kept false positives). The study was

very small, however, and we could not draw general

conclusions.

Next, we undertook a small study with graduate students

and found that those using our IR technique (called

Requirements Tracing On-target or RETRO) achieved

statistically significantly higher recall (70.1 vs. 33% for the

group using no automated technique) but lower precision

(12.8 vs. 24.2%), but took far less time to complete the

tracing task (three times less minutes (41.8 min vs. 120.66)

[23]. The students were tracing textual requirements to

textual design elements. We also conducted a small

usability survey was also conducted. Students found the

RETRO features that they used to be very useful. Students

used most of the features available to them but may have

misunderstood of the feedback.

Building on our study of the analysts’ effort [14],

Cuddeback et al. undertook a study at two Universities with

26 students using a ‘‘fake’’ version of RETRO (the tech-

nique was not applying IR algorithms to recover links but

rather was just loading a table of pre-calculated links) to

trace 32 requirements to 17 test cases for a Java style

checker [15]. Again, traceability matrices of varying

quality levels were given to the participants. We observed

that half the students made the results worse and half did

not. We observed that the results varied based on the

quality of the initial traceability matrix (high-recall, low-

precision quadrant; high-recall, high-precision quadrant,

etc.) There was no correlation between the quality of the

trace and the analysts’ effort [15]. Also, there was no

significant difference based on University [15].

Table 10 Student’s paired

t test, one-tailed for minimum

effort

Dataset CM-1 subset 1 Gantt 1 Gantt 2 MODIS

CM-1 subset 1 NA 3.45E-08 6.60E-14 5.41E-09

Gantt 1 3.45E-08 NA 0.006 0.027

Gantt 2 6.60E-14 0.006 NA 0.000

MODIS 5.41E-09 0.027 0.000 NA

140 Requirements Eng (2018) 23:119–143

123

www.manaraa.com

Egyed et al. found that manual tracing can be applied in

a time-effective manner when building traces from textual

requirements to source code in a constrained problem

(participants were given a subset of source code known to

match to the requirements being traced) [24]. They

undertook an experiment using 100 students who examined

textual requirements and traced either to classes or methods

for GanttProject (17 requirements traced to either 85

classes or 788 methods) or ReactOS (open-source imple-

mentation of Windows NT architecture) (16 requirements

traced to either 123 classes or 544 methods) [24]. They

found that code complexity increases trace recovery effort

as does tracing to methods versus classes. They also found

that the amount of time spent on a trace link was not

necessarily correlated with correctness: ‘‘A higher tracing

effort does not imply better quality. Data indicates that

trace link recovery falls into two categories: fast and

accurate or slow and inaccurate [24].’’

Recommender systems fall broadly into two categories:

content-based recommenders focus on textual descriptions

of products; collaborative recommenders make recom-

mendations based on the preference of nearest-neighbors

(or similar users) [25, 26]. Collaborative-filtering tech-

niques often outperform content-based ones; however,

they can only be employed after sufficient users have

indicated their preferences for a product (leading to the

cold-start problem) [25, 26]. Interactive recommender

systems ‘‘usually rely on an online learning algorithm that

gradually learns users’ preferences. At each step of the

interaction, the system generates a list of recommenda-

tions and observes the user’s feedback on the recom-

mended items indicating the utility of the

recommendations. The goal of such a system is to max-

imize the total utility obtained over the whole interaction

session [27].’’ Bostandjiev et al. introduce TasteWeights,

an interactive recommender for media content listed on

Facebook such as movies, books, and TV shows [28].

TasteWeights uses a visual representation to both explain

the recommendation process and to interact with the user

to obtain preferences. The user is able to change the

weight of an item, remove items, navigate context sour-

ces, and more. The authors found that explaining a rec-

ommendation process can increase user satisfaction and

that recommendation accuracy and user experience was

improved (per a user questionnaire) as a result of the

provided interactivity [28]. Hariri et al. examine the

importance of context in interactive recommender sys-

tems. Specifically, they designed a system to detect and

adapt to changes in context based on the user’s ongoing

behavior by extending bandit algorithms to consider

sudden variations in the user’s feedback behavior as a

result of contextual changes. They applied their system to

two datasets (movie recommendations and college web

sessions) and showed that their system performed at least

as well as baseline algorithms [28].

The current work differs from the previous work in

several ways. First, it specifically focuses on the analysts’

behavior. Second, it examines a number of scenarios under

which the analysts ‘‘navigate’’ the generated traceability

links, *without* requiring real analysts. Third, it examines

analysts’ effort when using 12 different methods of

working with a TM. Fourth, the methods have been applied

to three datasets. Fifth, it provides guidance on how to best

work with feedback-driven automated information retrieval

tracing techniques. Finally, it does not suffer from the cold-

start problem in that even feedback on one candidate link

from one analyst can be used to rerun the linking algo-

rithms. Visualizations used by recommender systems to

interact with users could be applied to help design better

interfaces for trace link generation tools.

6 Conclusions and future work

We posited a theoretical and simplified model for analysts’

effort, in which the simulated analysts take perfect deci-

sions on the links that they review. Based on that model,

we used the ratio of the amount of time to find a link from

scratch to the amount of time to recognize a retrieved true

link as the effort ratio to study the analysts’ effort required

when working with candidate links generated by an auto-

mated technique. We simulated 12 analysts’ methods for

examining links, varying ordering, feedback, and pruning.

We varied the effort ratio from 2 to 20 (by steps of 3). We

examined the effort and precision and confirmed recall for

the various analysts’ methods and effort ratios on four

datasets.

We found that the analysts’ method does impact the

effort. In 48 scenarios (12 methods on four datasets), the

Global Feedback No Pruning (GFNP) method and Top 1

Feedback Pruning (TFP) methods resulted in the lowest

effort two times.5 The ‘‘worst’’ method appeared to be Top

1 No Feedback No Pruning (TNFNP), which was the

‘‘loser’’ in three of the 48 scenarios. While GFNP and TFP

were the winners more often than any other methods, they

did not always yield the highest quality in terms of preci-

sion and confirmed recall at the lowest effort point. The

TFP method was the overall winner in terms of quality,

though GFNP had lower effort for some datasets. The

datasets did impact the results. The lowest effort varied by

dataset in a statistically significant way. Though perfect

5 It should be noted that many of the 48 scenarios resulted in ties for

minimum effort value; thus, there were far less than 48 scenarios that

were ‘‘in the running’’ for best and worst.

Requirements Eng (2018) 23:119–143 141

123

www.manaraa.com

recall was always achieved, the precision and effort varied

widely by dataset.

We make the following observations. For No Feedback

methods, the global, local, and Top 1 represent three dif-

ferent ways of reordering and visiting the retrieved candi-

date links. The Top 1 Not Yet Examined No Feedback

method orders candidate links the same way as the Local

No Feedback method, but does not remove any candidate

links from consideration. When all retrieved links are

examined, Top 1 and global methods give the same

results—the links were simply reordered. As long as all are

examined, the same precision/recall values at the end will

be achieved. For local methods, there is a small number of

observed links, because of the filtering condition. So, recall

is the same, while precision is somewhat better. In general,

it appeared that the two Top 1 Not Yet Examined methods

with no pruning (regardless of feedback option) took the

longest to reach perfect confirmed recall for all the data-

sets. The fastest methods to reach 100% confirmed recall

were the pruned methods, which is not so surprising:

Assuming that candidate links with higher similarity scores

are more likely to be true links, a global method is a better

way to reach all of them than the Top 1 method.

When examining the winner and loser methods at fixed

effort and fixed recall, we found that the TFP method was

the overall winner. It required less observed links to

achieve recall of 1.0, with higher precision than the GFNP

and TNFNP methods. For all of the datasets except for

CM1 subset 1, the GFNP method was not far behind the

TFP method in terms of observed links required to achieve

perfect recall and precision. The TNFNP method, however,

performed very poorly. For some datasets, that method had

not yet found the first true link within the fixed number of

observed candidate links.

Based on our results, when analysts are deciding how to

configure the automated technique and how to work with

the candidate link list, we advise them to:

• use feedback,

• use the Top 1 Not Yet Examined method, and

• use pruning.

In general, this combination was the overall winner in

terms of lowest effort and highest quality compared to

other methods.

For future work, we will improve our log RETRO.NET

(a version of RETRO.NET that logs analysts’ keystrokes

and decisions) to support various ordering, feedback, and

pruning methods and allow the analysts to select a user

interface that presents the selected method. This improve-

ment will enable the simulation of other behaviors/meth-

ods, such as accept-focused, preview, and iterative. Such

improvement will help us better understand what cognitive

pattern analysts may have before, during, and after tracing.

Interactive recommender systems may provide inspiration

for new and better visualizations and interfaces to elicit

feedback from analysts. We will also consider imperfect

simulated analysts, which do not always make the correct

decision when examining a link. We are also working on

applying machine learning to the problem of determining

what methods may work best for a given dataset. Our

findings to date provide guidance, but the results may not

generalize and must be applied to never-before-seen data-

sets. Thus, we must discover the underlying attributes or

characteristics of a dataset that indicate how well a tracing

method or analysts’ method may or may not perform on it.

These attributes and characteristics depend on the words

contained in the elements composing the considered arti-

facts but also on other information contained therein, such

as UML class diagrams and relations embodied in tables.

We will consider how to extract and use this information in

a dedicated line of research work. Finally, because we

ultimately help human analysts in making the best use of

their time when reviewing candidate links, we plan to

perform case studies and experimental studies with real

human analysts to measure the benefit brought by the

improvement and guidance derived from this work.

Acknowledgements We thank Matt Smith and Chelsea Hayes for

their work on the spreadsheets and charts and tables in this paper. This

work was partially sponsored by NASA under Grant NNX06AD02G.

This work was funded in part by the National Science Foundation

under NSF Grant CCF 0811140 and by a Lockheed Martin grant.

References

1. Gotel O, Finkelstein A (1997) Extended requirements traceabil-

ity: results of an industrial case study. In: Proceedings of the 3rd

IEEE international symposium on requirements engineering

(RE’97). IEEE Computer Society, p 169

2. Hayes JH, Dekhtyar A, Sundaram S (2006) Advancing candidate

link generation for requirements tracing: the study of methods.

IEEE Trans Softw Eng 32:4–19

3. U.S. Department of Health and Human Services, Food and Drug

Administration (2002) General principles of software validation;

Final Guidance for Industry and FDA Staff

4. Gotel O, Huang JC, Hayes JH, Zisman A, Egyed A, Grünbacher

P, Dekhtyar A, Antoniol G, Maletic J, Mäder P (2012) Trace-

ability fundamentals. In: Huang JC, Gotel O, Zisman A (eds)

Software and systems traceability. Springer. ISBN: 1447122380

5. Dekhtyar A, Hayes JH, Smith M (2011) Towards a model of

analyst effort for traceability research: a position paper. In: Pro-

ceedings of traceability of emerging forms of software engi-

neering (TEFSE)

6. Hayes JH, Dekhtyar A, Osborne J (2003) Improving requirements

tracing via information retrieval. In: International conference on

requirements engineering, Monterey, California, pp 151–161

7. Sundaram S, Hayes J, Dekhtyar A, Holbrook E (2010) Assessing

traceability of software engineering artifacts. Requir Eng

15:313–335

8. Axiom. http://www.iconcur-software.com/. Last accessed 29 June

2016

142 Requirements Eng (2018) 23:119–143

123

http://www.iconcur-software.com/

www.manaraa.com

9. Baeza-Yates R, Ribeiro-Neto B (1999) Modern information

retrieval. ACM Press, Addison-Wesley

10. Hayes JH, Dekhtyar A, Sundaram S (2005) Improving after the

fact tracing and mapping to support software quality predictions.

IEEE Softw 22:30–37

11. Antoniol G, Canfora G, Casazza G, Lucia AD, Merlo E (2002)

Recovering traceability links between code and documentation.

IEEE Trans Softw Eng 28:970–983

12. Antoniol G, Caprile B, Potrich A, Tonella P (1999) Design-code

traceability for object oriented systems. Ann Softw Eng 9:35–58

13. Marcus A, Maletic J (2003) Recovering documentation-to-source

code traceability links using latent semantic indexing. In: Pro-

ceedings of the twenty-fifth international conference on software

engineering 2003, pp 125–135

14. Hayes JH, Dekhtyar A (2005) Humans in the traceability loop:

can’t live with ‘em, can’t live without ‘em. In: Proceedings of the

3rd international workshop on traceability in emerging forms of

software engineering. ACM, New York, NY, USA, pp 20–23

15. Cuddeback D, Dekhtyar A, Hayes J (2010) Automated require-

ments traceability: the study of human analysts. In: Requirements

engineering, IEEE international conference on, vol 0, 2010,

pp 231–240

16. Dekhtyar A, Hayes JH, Larsen J (2007) Make the most of your

time: how should the analyst work with automated traceability

tools? In: Proceedings of the third international workshop on

predictor models in software engineering. IEEE Computer Soci-

ety, Washington, DC, USA

17. Kong W-K, Hayes JH, Dekhtyar A, Dekhtyar O (2012) Process

improvement for traceability: a study of human fallibility. In:

Requirements engineering conference (RE), 2012 20th IEEE

international, pp 31–40, 24–28 Sept. 2012

18. Ali Nasir, Guéhéneuc Yann-Gaël, Antoniol Giuliano (2013)

Trustrace: mining software repositories to improve the accuracy

of requirement traceability links. Trans Softw Eng (TSE)

39(5):725–741

19. ‘‘GanttProject Home’’

20. G. SBRS MODIS science data processing software requirements

specification version 2

21. Cleland-Huang J, Chang C, Sethi G, Javvaji K, Hu H, Xia J

(2002) Automating speculative queries through event-based

requirements traceability. In: Proceedings of the IEEE joint

international requirements engineering conference (RE ‘02),

2002, pp 289–296

22. Hayes JH, Dekhtyar A, Sundaram S, Howard S (2004) Helping

analysts trace requirements: an objective look. In: International

conference on requirements engineering (RE’2004)

23. Hayes J, Dekhtyar A, Sundaram S, Holbrook E, Vadlamudi S,

April A (2007) REquirements TRacing On target (RETRO):

improving software maintenance through traceability recovery.

Innov Syst Softw Eng 3:193–202

24. Egyed A, Graf F, Grunbacher P (2010) Effort and quality of

recovering requirements-to-code traces: two exploratory experi-

ments. In: Requirements engineering, IEEE international con-

ference on, vol 0, 2010, pp 221–230

25. Zhang Z, Liu C, Zhang Y, Zhou T (2010) Solving the cold-start

problem in recommender systems with social tags. CoRR, abs/

1004.3732

26. Lika B, Kolomvatsos K, Hadjiefthymiades S (2014) Facing the

cold start problem in recommender systems. Expert Syst Appl

41(4, Part 2):2065–2073

27. Bostandjiev S, O’Donovan J, Höllerer T (2012) TasteWeights: a

visual interactive hybrid recommender system. In: Proceedings of

the sixth ACM conference on recommender systems (RecSys

‘12). ACM, New York, NY, USA, pp 35–42

28. Hariri N, Mobasher B Burke R (2014) Context adaptation in

interactive recommender systems. In: Proceedings of the 8th

ACM conference on recommender systems(RecSys ‘14). ACM,

New York, NY, USA, pp 41–48

29. CM1 DataSet, Metrics data program website, CM-1 project

Requirements Eng (2018) 23:119–143 143

123

www.manaraa.com

Requirements Engineering is a copyright of Springer, 2018. All Rights Reserved.

	Effective use of analysts’ effort in automated tracing
	Abstract
	Introduction
	Motivating example: HeartPace
	Contributions
	Paper organization

	Automated requirements tracing and analyst behavior models
	Automated requirements tracing
	Analyst effort estimation
	Analyst simulation
	Methods of candidate link validation
	Ordering of candidate links
	Using feedback
	Pruning

	Measures

	Analysts’ effort study
	Research questions
	Experimental design
	Gantt subset 1
	Gantt subset 2
	MODIS
	CM-1 subset 1
	Statistical analysis
	Threats to validity

	Results
	Related work
	Conclusions and future work
	Acknowledgements
	References

